lunes, 31 de agosto de 2009

Carrillo Gonzalez Alexis Alan



Hola mi nombre es Alexis Alan te invito a observar mi trabajo de los "aspectos generales de un control electrico"




Teoría clásica: control en lazo cerrado
Para evitar los problemas del control en lazo abierto, la teoría de control introduce la realimentación. Un regulador de lazo cerrado utiliza la realimentación para controlar los estados y las salidas de un sistema dinámico. El nombre de "lazo cerrado" hace referencia al camino que sigue la información en el sistema: las entradas al proceso (p. ej, la tensión que se aplica a un motor eléctrico) afecta a las salidas del proceso (p. ej., la velocidad o el par que ofrece el motor). Estas salidas se miden con sensores (captadores en el lenguaje de control) y se procesan, una vez comparadas con la referencia o consigna, mediante un controlador o regulador; el resultado, una señal de control, se añade a la entrada al proceso, cerrando el lazo. El control de lazo cerrado siempre debe estar formado por: - Un proceso - Medida y transmisión de la variable - Controlador - Elemento final de control
El control con lazo cerrado presenta las siguientes ventajas sobre el control en lazo abierto:
corrección de las perturbaciones (tales como rozamiento impredecible en un motor)
buen comportamiento incluso con incertidumbre en el modelo, es decir, en aquellos casos en que la estructura del modelo no representa perfectamente la realidad del proceso o los parámetros del modelo no se pueden medir con absoluta precisión
permite estabilizar procesos inestables
tolerancia a variaciones en los parámetros
La única desventaja del control en lazo cerrado, frente al control en lazo abierto, es que el primero reduce la ganancia total del sistema. Esto lleva al uso conjunto del control en lazo abierto y cerrado, para mejorar el rendimiento.
Una arquitectura muy frecuente para un regulador en lazo cerrado es el regulador PID.
La salida del sistema y(t) se compara con el valor de referencia r(t), a través de las medidas de un sensor. Se alimenta el error e al regulador C. Se define el error e como la diferencia entre el valor de referencia y la salida del sistema. En función del error, el regulador modifica su salida, que es precisamente la alimentación u al proceso que se está controlando, P. Este esquema es el que se muestra en la figura.
El sistema en la figura es un sistema sencillo de una sola entrada y una sola salida, SISO (del inglés single-input-single-output); los sistemas más complejos, MIMO (Multi-Input-Multi-Output) son bastante frecuentes. En estos casos, las variables se representan mediante vectores en lugar de valores escalares.

SISTEMA DE CONTROL DE LAZO ABIERTO

DEFINICION

1. Sistema de control de lazo abierto: Es aquel sistema en que solo actúa el proceso sobre la señal de entrada y da como resultado una señal de salida independiente a la señal de entrada, pero basada en la primera. Esto significa que no hay retroalimentación hacia el controlador para que éste pueda ajustar la acción de control. Es decir, la señal de salida no se convierte en señal de entrada para el controlador. Ejemplo 1: el llenado de un tanque usando una manguera de jardín. Mientras que la llave siga abierta, el agua fluirá. La altura del agua en el tanque no puede hacer que la llave se cierre y por tanto no nos sirve para un proceso que necesite de un control de contenido o concentración. Ejemplo 2: Al hacer una tostada, lo que hacemos es controlar el tiempo de tostado de ella misma entrando una variable (en este caso el grado de tostado que queremos). En definitiva, el que nosotros introducimos como parámetro es el tiempo.
Estos sistemas se caracterizan por:
Ser sencillos y de fácil concepto.
Nada asegura su estabilidad ante una perturbación.
La salida no se compara con la entrada.
Ser afectado por las perturbaciones. Éstas pueden ser tangibles o intangibles.
La precisión depende de la previa calibración del sistema.
2. Sistema de control de lazo cerrado: Son los sistemas en los que la acción de control está en función de la señal de salida. Los sistemas de circuito cerrado usan la retroalimentación desde un resultado final para ajustar la acción de control en consecuencia. El control en lazo cerrado es imprescindible cuando se da alguna de las siguientes circunstancias:
- Cuando un proceso no es posible de regular por el hombre.
- Una producción a gran escala que exige grandes instalaciones y el hombre no es capaz de manejar.
- Vigilar un proceso es especialmente duro en algunos casos y requiere una atención que el hombre puede perder fácilmente por cansancio o despiste, con los consiguientes riesgos que ello pueda ocasionar al trabajador y al proceso.
Sus características son:
Ser complejos, pero amplios en cantidad de parámetros.
La salida se compara con la entrada y le afecta para el control del sistema.
Su propiedad de retroalimentación
Ser más estable a perturbaciones y variaciones internas.
Un ejemplo de un sistema de control de lazo cerrado sería el termo tanque de agua que utilizamos para bañarnos. Otro ejemplo sería un regulador de nivel de gran sensibilidad de un depósito. El movimiento de la boya produce más o menos obstrucción en un chorro de aire o gas a baja presión. Esto se traduce en cambios de presión que afectan a la membrana de la válvula de paso, haciendo que se abra más cuanto más cerca se encuentre del nivel máximo.

El control manual abarca conmutar y regular individualmente los circuitos eléctricos; el número de las combinaciones conmutables aumenta considerablemente, de acuerdo con el número de circuitos.Teniéndose circuitos eléctricos regulables, son muchas las situaciones de iluminación posibles.Dónde está la diferencia con respecto al control de luz programable: Si la conmutación y la regulación se efectúan a mano, las combinaciones y los estados prácticamente dejan de ser reproducibles.

El control automático de procesos es parte del progreso industrial desarrollado durante lo que ahora se conoce como la segunda revolución industrial. El uso intensivo de la ciencia de control automático es producto de una evolución que es consecuencia del uso difundido de las técnicas de medición y control .Su estudio intensivo ha contribuido al reconocimiento universal de sus ventajas.
El control automático de procesos se usa fundamentalmente porque reduce el costo de los procesos industriales, lo que compensa con creces la inversión en equipo de control. Además hay muchas ganancias intangibles, como por ejemplo la eliminación de mano de obra pasiva, la cual provoca una demanda equivalente de trabajo especializado. La eliminación de errores es otra contribución positiva del uso del control automático.
El principio del control automático o sea el empleo de una realimentación o medición para accionar un mecanismo de control, es muy simple. El mismo principio del control automático se usa en diversos campos, como control de procesos químicos y del petróleo, control de hornos en la fabricación del acero, control de máquinas herramientas, y en el control y trayectoria de un proyectil.
El uso de las computadoras analógicas y digitales ha posibilitado la aplicación de ideas de control automático a sistemas físicos que hace apenas pocos años eran imposibles de analizar o controlar.
Es necesaria la comprensión del principio del control automático en la ingeniería moderna, por ser su uso tan común como el uso de los principios de electricidad o termodinámica, siendo por lo tanto, una parte de primordial importancia dentro de la esfera del conocimiento de ingeniería. También son tema de estudio los aparatos para control automático, los cuales emplean el principio de realimentación para mejorar su funcionamiento

Fuente

No hay comentarios:

Publicar un comentario